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Abstract A refined approach where the wave function is gradually improved is developed 
in the one-dimensional (ID) large-Fr6hlich-polaron problem The results for the ground-stale 
energy. the effective mass, and the average number of virmal phonons are obhined for a 
wide range of the coupling constant a, and are in agreement with those of the Feynman 
path-integral formalism. In addition, in the weak-coupling limit. the expansions of these 
observables in powers of the coupling constant are exactly calculated up to the u3-term. They 
are E = -a - 0.06066c12~- O.O0844a3, m' = 1 + 0.5a + 0.191 9 k 2  + 0.069 I h 3 ,  and 
N = 0.5- + 0.121 32a2 + 0.02954a3, which agree with the known results of the foulth-order 
permrbation theory. 

1. Introduction 

The problem of the one-dimensional (ID) polaron has attracted much attention in the last 
decade. The reason is threefold. First, it has been technologically possible to produce 
well characterized quasi-ID structures (i.e. quantum wires). Second, the polaron effect is 
theoretically enhanced with the lowering of the dimension 11-31. Third, owing to the 
simplicity of the mathematics, it provides a subject of interest where a new ansatz can be 
developed extensively. 

There are two types of model employed for the ID polaron. They are the small- and 
the large-polaron model. The former describes the I D  polaron which emerges from the 
linear conjugative organic polymers conductors cis- and trans-polyacetylene ((CHX) [41. 
Both the kink soliton solution [4] and the non-linear soliton-type polaron solution [SI were 
found in the same theoretical model. The latter is the standard polaron model, i.e. the 1D 
large-Frohlich-polaron one [3,6,7], where the electrons interact with the lattice vibration 
through the deformation potential in one dimension. Campbell et ai [8] have shown that 
these two models are almost identical in the weak-coupling range. 

In this paper we will focus on the ID large Frohlich polaron. The Hamiltonian is given 
by [3,6,71 

t where m is the electron band mass, WO is the frequency of the Lo phonons, U, and aq are 
respectively the creation and annihilation operators of the Lo phonons with the wave vector 
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q. and L is the length of the crystal lattice. In this paper the coupling constant a is identical 
to a' in [7] and 2naop in [6].  

Degani era1 [6] had calculated the ground-state energy and effective mass for all values 
of the coupling constant by using the Feynman path-integral formalism. Recently, with the 
fourth-order perturbation theory, Peeters et ai [7] found the expansions of the ground-state 
energy, the effective mass, and the number of virtual phonons in powers of the coupling 
constant as E = -a-0.0606&~~, m' = 1+0.Sa+0.191 9 k 2 ,  and N = 0.5a+0.12132a2. 
To the best of our knowledge, no exact result for the ID polaron has been found up to now. 

The present paper is intended to develop a new approach to calculate the properties of 
the ID polaron. We first apply the canonical transformation of Lee, Low and Pines (LLP) 
[9] to the Hamiltonian (1) and get a Hamiltonian which no longer contains the electron 
coordinates. Then, on the basis of the zero-order approximate wave function, taking into 
account correlations of the wave vectors of the emitted virtual phonons, we gradually 
improve the wave function to diagonalize the Hamiltonian. As a result, we obtain not 
only the results for the ground-state energy, the effective mass, and the number of virtual 
phonons for a wide range of the coupling constant, but the expansions of those observables 
in the weak-coupling limit as well. Finally, we compare our results with the well known 
previous ones. 

This paper is arranged as follows. Ln section 2 we describe in detail the basic process 
involved in our method for the ID polaron, when considering correlations between the wave 
vectors of pairs of virtual phonons in the field. Moreover, we calculate the results for 
some observables for a wide range of the coupling constant and in the weak-coupling limit. 
In section 3, the method in section 2 is directly extended to take account of correlations 
among the wave vectors of three phonons, and analogous calculations are performed. We 
compare our results with the Feynman and the fourth-order perturbative ones and present 
some discussions and conclusions in the last section. 

2. Two-phonon correlation 

First of all,we apply the transformation of LLP [9] to the Hamiltonian (1) and adopt the 
units of 2m = f~ = 00 = 1, which results in 

The total momentum Q is conserved and regarded as a c-number, since the Hamiltonian is 
translationally invariant. For convenience we rewrite the Hamiltonian (2) in the following 
form: 

where the last term in the right-hand side is referred to as the recoil term. 
The next step is to find a wave function I) which satisfies the Schrodinger equation 

H I) = E  I). (4) 
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Ivic and Brown 1101 dealt with the problem of the small polaron in a ID crystal lattice 
with the phonon coherent state proposed by Davydov et al [ll]. In this paper, it is not 
far-fetched to suggest preliminarily the following coherent state: 

as the wave-function solution of the Hamiltonian (3). Substituting equation (5) into 
equation (4). followed by collecting together the terms in (at)" I}o, (at)' I)o, and (at)z I)o, 
neglecting the (at)' I)o-term, and equating the coefficients of the terms of (at)" I)o and 
(at)' 1)" yields 

U 

1 - 2 Q q + q 2  a(q) = - 

9 

Inserting equation (6) into equation (7) we obtain the energy of,a moving polaron 

Setting the polaron momentum Q = 0, we have the I D  polaron ground-state energy 

E = -ff. (9) 

In order to study the dynamics properties of the ID polaron, it is fundamental to 
evaluate the effective mass. The relation between the effective mass and the energy at 
small momentum i s  generally expressed as 

After substituting equation (8) into equation (10) we get the effective mass of the 1D polaron 

(11) 1 m* = 1 + 301. 

The average number of virtual phonons can also be directly obtained from the energy 

N ( Q )  = 1 - -01- - - Q -  E ( Q ) .  ( ,"a :Q) 

This bas been proved exactly in [121. According to equations (8) and (12), when the polaron 
is in the ground state the average number of virtual phonons is given by 

N = 12. (13) 

It i s  notewoahy that equations (9), (ll),  and (13) are just the results of the weak- 
coupling approximation of the Feynman path-integral formalism 161 and the second-order 
perturbation theory [71. 
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We now return to the Hamiltonian (3) and the coherent state determined by equations (5) 
and (6). It is not difficult to find that this coherent state is a exact solution to the Hamiltonian 
(3) in the absence of the recoil term. We refer to it as the zero-order wave-function solution. 
It is a good approximation when the virtual phonon number is very small, but as the number 
of virtual phonons increases with increasing 01, the recoil term should be taken into account. 

In order to further diagonalize the Hamiltonian (3), we should revise the form of the 
coherent state (5). It is instructive to apply the Hamiltonian (3) to this zero-order wave 
function 

We find that a (at)’ I)o-term is superfluous when H I)o gives E I)o. It is apparent that 
there is, at least, a (at)’ I)o-term in the exact solution of the Hamiltonian (3). Therefore 
we improve the coherent state (5) as the following extended form: 

where bZ(q1,qz) is the interchanging symmehical function of q1 and 92. It is implied in 
equation (15) that correlations between wave vectors of pairs of emitted phonons in the 
field are under consideration. 

In a similar manner, substituting equation (15) into equation (4), neglecting (at)3 I)o- 
and (at)4 I)o-terms, and equating the coefficients of the terms of (at)’ I)o, (at)’ [)a, and 
(at)’ [)a in both sides of the Schriidinger equation supplies 

= -41 q201(PI)mz). (18) 

In terms of the above three equations we get the self-consistent equation satisfied by a(q) 

Introducing the distribution function 

and transforming the summation E, into a integral ( L / 2 z )  J dq, then equations (16) and 
(19) can be respectively reduced to 



Calculation of the properties of a one-dimenswnal polaron 6603 

It can be noticed from equations (21) and (22) that F ( q )  is the distribution function of the 
ID polaron ground-state energy in terms of q and equation (22) is its self-consistent integral 
equation. 

If we only take the first term in the right-hand side of equation (22), we will obtain 

Inserling equation (23) into equation (22) we obtain E = -CY, which is just the zero- 
order approximate result equation (9) mentioned above. For further iteration, substituting 
equation (U) into the right-hand side of equation (22) gives 

CY 2a2 + F(q)=-n(l  -2Qq+q2) n2(1 -2Qq+q2)* 

Inserting equation (24) into equation (21), the ground-state energy reads 

E = -CY - 0.06066ar'. (2.5) 

In addition, the expansions of the effective mass and the number of virtual phonons are 
calculated as follows: 

m*= 1+0.5a+0.19194ct2 

N = 0.5a + 0.121 32a2 

where use has been made of equations (10) and (12). These are none other than the previous 
fourth-order perturbative result as given in [7]. 

Repeating the same procedure step by step, we will get the expansions of the observables 
including a3 and its subsequent terms. It is nonsense to write down these terms in the 
expansions, because they are incompletely calculated due to the fact that the (at)3 I)o 
and (at)4 I)o term are neglected in deriving the coupled integral equations. However the 
coefficient of the a2-terms is exactly calculated, as will be shown in the next section. 

On the other hand, the infinite-iteration technique can be used to solve the self-consistent 
integral equation (22) satisfied by F ( q )  numerically. Solving for F(q),with the help of 
equation (2) we numerically calculate the ID polaron ground-state energy for a wide range 
of coupling constant up to a = 2.0. In addition, by means of equations (10) and (12) we 
can obtain the effective mass up to a = 1.5, and the average number of virtual phonons up 
to a = 2.0. The results are shown in figures 1-3 with dashed lines. 

3. Three-phonon correlation 

In order to solve for the 1D polaron more accurately, we can straightforwardly extend the 
method described in section 2 to take account of correlations among the wave vectors of 
three virtual phonons in this section. 
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Figure 1. The ground-state energy of lhe ID polaron normalized to the Feynman energy %/EF 
as a function of the coupling constant a up to a = 2.5. The solid line and the dashed line, 
respectively, represent lhe results calculated in sections 3 and 2. The dolled line denotes the 
fourth-order wurbative results. 
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Figure 2. The effective mass of the ID polaron normalized to the F e y ”  mass mElma as a 
function of the coupling constant a up to a = 2.5. The notation is the same as in figure 1. 

According to the analogous discussion in section 2, the improved wave function should 
take the form 

1)3 =I)o + bz(p1, ~ Z ) U ; , U ~  I)o + b3(41.qz, qdajiakaJ3 I)o (28) 
4>.Q 81.92.0 

where ~ ( Q L ,  9 2 ,  q 3 )  is the interchanging symmetrical function of 91, 92, and 93. The 



Calculation of the properties of a one-dimensional polaron 6605 

0.50 
0.0 0.5 1.0 1.5 2.0 2.5  

a 
Figure 3. The average number of vinual phonons of the ID polaron normalized to the Eeynmvl 
phonon number NOINS as a function of the coupling constant 01 up Io 01 = 2.5. The notation is 
the same as in figure 1. 

physics behind equation (32) hints that correlations among wave vectors of three emitted 
phonons in the field are taken into consideration. 

We skip the details of the derivation and directly present the coupled integral equations 
as follows: 

E = 1, F(q)dq + Q2 

CO 

(2% 

A = [E + (1 - 2Q4 + q2)F(q)  + 2(qi + qz)~F(q)]G(~i ,  qz) 

+ [s + (1 - 2Qqi + q:)F(qi) + 2(qz + q)qiF(qi)]G(qz, 4) 

+ [: + (1 - 2 Q a  + &)Fiqz) +Wqi + q)qzF(qzj]G(q. qi). (33) 

Without regard to the second term in equation (31), all the results in section 2 will be 
recovered. It is evident from the next iteration that the contribution of the second term in 
equation (31) to the energy begins with the a3-term. Choosing Fo(Q) in equation (23) and 



6606 Chen Qinzhu et a1 

as the initiaI values for iteration and inserting them into the second term of the right-hand 
side of equation (31). with the help of equations (29) and (30) we obtain an a3-term first, so 
the coefficient of the o12-term is unchanged. In other words, the coefficient of the &term in 
the expansion of the energy is exactly calculated in section 2. Furthermore, we can say that 
the coefficient of the a3-term in the energy expansion is exactly calculated in this section 
for the reason that the next improvement of the wave function will not lead to modification 
of the coefficient of the a3-term. Similar statements also hold true for the effective mass 
and the average number of virtual phonons. Consequently, collecting all the a3-terms, we 
arrive at the expansions of the three observables up to a3-terms 

E = -U - 0.060 66a2 ~- 0.008 44a3 

m* = 1 + 0 . 5 ~  + 0.191 94a2 + 0.069 l k 3  

N =0.5~+0.1213k~+O.O2954ct~. (35) 

Alternatively, proceeding as outlined in section 2, we can also numerically solve the 
coupled self-consistent equations (30) and (31) simultaneously, and obtain the ground-state 
energy, the effective mass, and the number of virtual phonons for 01 e 2.5 in the light of 
equations (29), (IO), and (12). The results are presented in figures 1-3 with solid lines. 

4. Comparison and discussions 

It can be seen that, in the weak-coupling limit, we have obtained the expansions of the 
ground-state energy, the effective mass, and the average number of virtual phonons up to 
the &term in section 2; these are the same as the known fourth-order perturbative results 
[7]. Furthermore we have exactly calculated the expansions of those observables up to the 
cr3-term in section 3. It is predicted that the results in equation (35) are identical to those 
of the sixth-order perturbation theory which are unknown. To the best of our knowledge, 
the present paper is the first one to give the coefficients of the a3-term in the expansions 
of some observables for the ID polaron in the weak-coupling limit. 

On the other hand, we have calculated the ground-state energy, the effective mass, and 
the average number of virtual phonons for a wide coupling range, by solving the coupled 
integral equations numerically. As is well known, among various approaches applied to the 
polaron problem, the variational path-integral method of Feynman is a particularly elegant 
one for the whole coupling range and can be used to check a variety of approaches and new 
ideas, so it is natural in the present paper that we compare our results obtained in sections 2 
and 3 with the Feynman ones 161 for a range of the coupling constant. 

Here we digress briefly to analyse qualitatively the relation between the exact results 
and the Feynman ones for some observables in the whole coupling range, by comparing 
their corresponding results in the weak- and saong-coupling limits. Recently, through the 
scaling law, Peeters et a1 [7] have presented the Feynman results for some observables in 
the weak-coupling limit 

E = -U - l a 2  27 m* = I  + ;U+ p N = . & + & a 2  (36) 

and in the strong-coupling limit 
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Alternatively, the exact results in the strong-coupling limit have also been obtained in [7] 
with a systematic adiabatic strong-coupling approximation 

E = -0.3330880~ m' =~2.12540r4 - N = 0.666 176a'. (38) 

Usually, the known fourth-order perturbative results 171 can be referred to as the exact 
ones in the weak-coupling limit. Comparing these exact results with the Feynman ones 
equations (36) and (37) in the two limits, we first deduce that the Feynman results for the 
ground-state energy are a little higher than the exact ones for all coupling constants. This 
point is confirmed by the fact that the Feynman approach is a variational one. For the 
effective mass, it is then inferred that the Feynman results are higher than the exact ones 
in the weak-coupling range and lower in the strong-coupling range. It is also learned from 
the comparison that the Feynman results for the average number of virtual phonons are a 
little less than the exact ones in the whole coupling range. 

In figure 1 we have displayed the ground-state energy normalized to the Feynman energy 
Eo/EF versus the coupling constant. It is of some interest to note that the results for the 
energy calculated in section 2 (3) are about 4% (2%) less than the Feynman ones when 
a < 2 (2.5). 

It should be pointed out that the present approach is not a variational one, so the obtained 
ground-state energy is not a upper bound to the exact one. In the 3D polaron Alexandrou 
and Rosenfelder [13] found the exact energy to be about 2% less than 3D Feynman one. 
Therefore it is possible that the exact ground-state energy is less than the Feynman one by 
the same percentage in the ID polaron. Based on this analysis we can say that the present 
results for the ground-state energy obtained in sections 2 and 3 are closer to the exact ones 
than the Feynman ones. More importantly, with the coupling constant increasing, the results 
obtained in section 3 seem to be better than those in section 2 as also indicated in figure 1. 

It is very interesting to link the average number of virtual phonons in the field with 
the valid range of our method in sections 2 and 3. We can easily check that the Feynman 
results for the average number of phonons are NF = 1.745 for a = 2 and NF = 2.971 for 
a = 2.5. The exact values of the average number of virtual phonons, which are little higher 
than the Feynman ones as stated before, are estimated as Nen = 2 for a = 2 and Ne, N 3 
for 01 = 2.5. On the other hand, physically, if the average number of particles in the field 
is less than two (three) it is sufficient to consider two- (three-) particle correlations. So it is 
predicted theoretically that the valid range of our method described in section 2 (3) should 
be a ,< 2 (2.5). Fortunately, from figure 1 we can see that this is exactly that case. It 
may not be supertluous to stress that the validity of our approach is self-consistent with the 
average number of virtual phonons and its reliability is beyond doubt. 

The curves of the effective mass normalized to the Feynman result m:/mE against the 
coupling constant are plotted in figure 2. It can be seen that, when a < 1.5, the results 
obtained in section 2 are in agreement with the Feynman ones, and the results in section 3 
are less than the Feynman ones and higher than the fourth-order perturbative ones when 
a < 2.5. 

It should be recalled from previous discussions that the exact results for the effective 
mass are less than the Feynman results in the weak-coupling range. In addition, the fourth- 
order perturhative results are less than the exact ones since the higher-order terms are 
neglected in the expansion. Therefore we can say that the exact results for the effective 
mass in the weak-coupling range are just between the results of the Feynman and the 
perturbation theory. Thus, it can be inferred from figure 2 that the results for the effective 
mass obtained in section 3 are the closest to the exact ones, and the results in section 2 
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which agree with the Feynman ones are a little higher than the exact ones in a wide coupling 
range. What is more, the valid range of our method in section 3 is much wider than that in 
section 2, as also shown in figure 2. 

Figure 3 presents the number of virtual phonons normalized to the Feynman result 
No/Np versus the coupling constant. With increasing coupling constant, the results for the 
phonon number in the field calculated in section 3 are much closer to the Feynman ones 
than those in section 2 when a < 2.5. It is believed by similar discussion that the results 
calculated in section 3 are better than the results in section 2 and the Feynman ones when 
01 < 1.8. 

Finally, it is tedious but straightforward to extend our approach to consider correlations 
of the wave vectors of any n phonons. Without loss of generality, the wave function should 
take the following more general form: 

By means of analogous procedures, we could exactly obtain the expansions of some 
observables up to a", because the next extension would not modify the a"-term, which 
could be induced from the context. When n approaches infinity the results are exact and 
the wave function limn+- \).is the exact solution. 

It is to be expected that the valid range of our approach will be enlarged with larger n, 
but it should be pointed out that, even if n is extended to infinity, the results for all values 
of the coupling constant cannot be obtained. The reason is that in the strong-coupling limit 
some observables of the Frohilch optical polaron are expanded in powers of 1/01' instead 
of a 1141. 

Most importantly, it can be concluded (at least for the large polaron) that our extended 
approach considering correlations of n phonons is superior to the corresponding 2nth-order 
perturbation theory, because we can explicitly and directly calculate the expansions of 
the observables up to the cP-term in a strict mathematical sense, but in the 271th-order 
perturbation theory, it is very difficult to calculate all the contributions from the complicated 
nth-order Feynman diagrams for large n. 

In summary, we have presented a novel approach to deal with the I D  polaron system. For 
a wide range of the coupling constant, the results of the ground-state energy, the effective 
mass, and the average number of virtual phonons have been calculated; these agree with 
the Feynman ones and are perhaps closer to the exact ones. In the weak-coupling limit, we 
reobtain the results for some observables known in the fourth-order pertnrhation theory. In 
addition, we evaluate the coefficients of the a3-term in the expansions for some observables 
for the first time. 

The present approach considering two-phonon correlations has been applied to the 3D 
polaron [15]. We would like to point out that this new idea may also be suited to the 
treatment of other polaron-like problems. 
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